
The Slater–Koster tight-binding method: a computationally efficient and accurate approach

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2003 J. Phys.: Condens. Matter 15 R413

(http://iopscience.iop.org/0953-8984/15/10/201)

Download details:

IP Address: 171.66.16.119

The article was downloaded on 19/05/2010 at 06:39

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/15/10
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS: CONDENSED MATTER

J. Phys.: Condens. Matter 15 (2003) R413–R440 PII: S0953-8984(03)56655-3

TOPICAL REVIEW

The Slater–Koster tight-binding method: a
computationally efficient and accurate approach

D A Papaconstantopoulos and M J Mehl

Center for Computational Materials Science, Naval Research Laboratory, Washington, DC, USA

E-mail: papacon@dave.nrl.navy.mil and mehl@dave.nrl.navy.mil

Received 26 November 2002, in final form 10 January 2003
Published 3 March 2003
Online at stacks.iop.org/JPhysCM/15/R413

Abstract
In this article we discuss the Slater–Koster (SK) tight-binding (TB) method
from the perspective of our own developments and applications to this method.
We first present an account of our work in constructing TB Hamiltonians
and applying them to a variety of calculations which require an accurate
representation of the electronic energy bands and density of states. In the
second part of the article we present the Naval Research Laboratory TB method,
wherein we demonstrate that this elaborate scheme can accurately account for
both the band structure and total energy of a given system. The SK parameters
generated by this method are transferable to other structures and provide the
means for performing computationally demanding calculations of fairly large
systems. These calculations, including molecular dynamics, are of comparable
accuracy to first-principles calculations and three orders of magnitude faster.

Contents

1. Introduction 414
2. Formalism of the tight-binding method 415
3. Fitting of band structures 417

3.1. Single-element materials 418
3.2. Binary compounds 419
3.3. Ternary compounds 420
3.4. High-temperature superconductors 421

4. The NRL tight-binding method 422
4.1. The tight-binding parameters—elemental systems 423
4.2. The tight-binding parameters—multi-component systems 425

5. Equation of state 426
6. Elastic constants 427
7. Phonon frequencies 428
8. Vacancies 430

0953-8984/03/100413+28$30.00 © 2003 IOP Publishing Ltd Printed in the UK R413

http://stacks.iop.org/JPhysCM/15/R413


R414 Topical Review

9. Surfaces 431
10. Stacking faults and ductility 432
11. Semiconductors 434
12. Molecular dynamics 434
13. Magnetism 435
14. Binary compounds 436

Acknowledgments 437
References 438

1. Introduction

The classic paper of Slater and Koster (SK) [1] proposed a modified linear combination of
atomic orbitals (LCAO) method to interpolate the results of first-principles electronic structure
calculations. As they noted, at the time (1954) it was computationally impossible to directly
evaluate the large number of integrals occurring in the LCAO method. However, since this
approach shows all of the correct symmetry properties of the energy bands as well as providing
solutions of the single-particle Schrödinger equation at arbitrary points in the Brillouin zone,
they suggested that these integrals be considered as adjustable constants determined from the
results of other, more efficient, calculations.

Although the continuous development of computers has eliminated some of the initial
reasons for developing this interpolation scheme for the LCAO method, it has evolved into
a powerful approach for calculating the total energy, electronic energy bands, and electronic
densities of states for arbitrary systems. Over the last 40 years there have been numerous
applications of this method, which has been pursued in a variety of problems, following
different philosophies and placing different levels of emphasis on the required level of accuracy.

In addition to the original SK paper, the interested reader should consult the review
article by Nussbaum [2] for details of the formalism of the SK approach. An early review
of applications of the tight-binding (TB) method may be found in the articles in volume 35 of
Solid State Physics [3–6]. A good account of TB theory can be found in Harrison’s book [7].
He developed a ‘universal’ set of TB parameters which is very useful for making approximate
calculations and very important for obtaining a basic understanding of band structures. We
have also covered some aspects of TB theory in an earlier review [8].

In this paper we first present a summary of the SK theory in section 2, and then concentrate
on presenting an account of our own contributions to the SK method. Our emphasis is
on an implementation of the method which accurately reproduces first-principles data in a
computationally efficient way, while avoiding simplifications that may take us into a regime
where we would obtain only a qualitative account of the electronic structure. While our work
is based on constructing TB Hamiltonians by fitting to first-principles calculations, there have
been efforts to derive these Hamiltonians from density functional theory [9].

The present work reflects two phases. The first refers to applications of the SK method
which are based on fitting only the electronic energy bands and density of states (DOS). The
most comprehensive source of this work is [10]. The second phase is represented by the Naval
Research Laboratory tight-binding (NRL-TB) method [11, 12]. This approach includes total
energy as well as energy bands in the fit, and uses distance- and environment-dependent SK
parameters to provide transferability between different structures. The first phase is described
in section 3. The NRL-TB model is described in section 4, with various applications in the
following sections.
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2. Formalism of the tight-binding method

The TB or SK formalism is an extension of Bloch’s original LCAO method [13]. Consider a
periodically replicated unit cell, where the lattice vectors are denoted as Rm , with a set of atoms
i located at positions bi in each unit cell. Associated with each atom is a set of atomic-like
orbitals φiα , where α denotes both the orbital and angular quantum numbers of the atomic
state. In general, orbitals which are on different atoms are not orthogonal. In this case, we
may use Löwdin’s method [14] to construct a set of wavefunctions ψiα which have symmetry
properties similar to those of the corresponding φiα , but are orthogonal:∫

ψ∗
iα(r − Rm − bi)ψ jβ(r − Rn − b j) d3r = δi jδmn . (1)

As in standard LCAO calculations and in the Hohenberg–Kohn–Sham density functional theory
(DFT) formalism [15, 16], we now assume that the system can be described by a set of
non-interacting single-particle wavefunctions which obey Fermi statistics. Following Bloch’s
theorem, these wavefunctions can be written in the form

�kiα(r) = N−1/2
∑

n

exp(ik · Rn)ψiα(r − Rn − bi ), (2)

where k is the Bloch wavevector and N is the number of unit cells in the sum. The solution to
Schrödinger’s equation for wavevector k then requires the diagonalization of the Hamiltonian
matrix using the basis functions (2). Since the Hamiltonian H has the periodicity of the lattice,
this basis will block-diagonalize the Hamiltonian, with each block having a single value of k.
Within one of these blocks, the matrix elements can be written in the form

Hiα, jβ(k) =
∑

n

exp(ik · Rn)

∫
ψ∗

iα(r − Rn − bi)Hψ jβ(r − b j) d3r, (3)

where we have used the translation symmetry of the lattice to remove one of the sums over the
lattice vectors R.

The Hamiltonian H includes a single-particle potential, which we may write, without
approximation, as

V (r) =
∑
nk

Vk(r − Rn − bk), (4)

where the potential Vk is centred on the kth atom and vanishes at some distance away from that
atom. If we substitute this expression and the wavefunction expansion equation (2) into (3),
then each term of the integral has a contribution from one of three regions: the regions centred
around the two atomic-like wavefunctions ψiα and ψ jα, and the region centred around the
potential at bk . This leads to a classification of the integrals into four categories:

(i) If all three locations are on the same atom, this is an on-site integral.
(ii) If the location of the potential is the same as the location of one of the wavefunctions,

while the other wavefunction is at a separate location, this is a two-centre integral.
(iii) If the wavefunctions and the potential are all located at different sites, this is a three-centre

integral.
(iv) The fourth category occurs when the wavefunctions both come from the same site but the

potential is on a different site. This category shares features with both the two-centre and
three-centre integrals but is actually a local environment or crystal field correction to the
on-site terms. This category was ignored by SK, but the formalism for its use was later
developed for s and p orbitals by Mercer and Chou [17] and extended to d orbitals by
Cohen et al [18]. We will not consider this type of integral further in this paper.
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Following SK, we now assume that the potentials Vk(r) are spherically symmetric. Then
the wavefunctionsψ and φ can be specified by the usual angular momentum quantum numbers,
and the on-site integrals only contribute to the diagonal elements of the Hamiltonian. We further
assume that the three-centre integrals can be neglected compared to the two-centre integrals.
This is not strictly true [1, 10], but it considerably simplifies the method, and in many cases
leads to accurate predictions of the electronic structure and total energy of a system, as we shall
see. In this two-centre approximation the integrals in (3) depend only on the displacement u
between the two atoms, and have the form

H i j
αβ(u) =

∫
ψ∗

iα(r − u)H2cψ jβ(r) d3r, (5)

where H2c is the two-centre part of the Hamiltonian, i.e., the kinetic energy operator and a
spherically symmetric potential centred on atom i or on atom j . These terms depend on the
orientation of u, the magnitude of the separation between atoms (u = |u|), and the angular
momenta contained in the quantum numbers α and β. If we restrict the atomic orbitals φi

to s, p, and d angular momenta, then each term of equation (5) can be written in terms of
14 SK parameters. In our notation these will be denoted as Habγ (u), where a and b specify
the angular momenta of the orbitals (s, p, d), and γ = σ, π, δ specifies the component of the
angular momentum relative to the direction u. In the case where the two atoms are identical,
four pairs of the SK parameters are related by symmetry, giving ten independent parameters.
We should note that the matrix elements are short range: if the wavefunctions ψiα(r − u) and
ψ jβ(r) do not appreciably overlap, then the integral equation (5) will vanish.

In the SK method we replace the on-site and two-centre integrals Habγ (u) by parameters
which are chosen to reproduce the first-principles single-particle band structure of a standard
crystal or set of crystals. In the original SK work these parameters were determined by
fitting to first-principles band structures at high-symmetry points. The parameters were then
used as interpolation parameters to describe the band structure throughout the Brillouin zone.
However, as we shall see below, properly chosen SK parameters are frequently transferable
from one structure to another. They can be used to describe structures which are not in the
original database.

Mattheiss [19] modified this two-centre TB method to use non-orthogonal orbitals, i.e.,
omitting the Löwdin transformation of the atomic orbitals φ into orthogonal orbitals ψ . The
basis functions equation (2) are then replaced by the functions


kiα(r) = N−1/2
∑

n

exp(ik · Rn)φiα(r − Rn − bi). (6)

Since these are no longer orthogonal, the problem of diagonalizing the Schrödinger equation is
transformed into a generalized eigenvalue problem, involving the Hamiltonian matrix elements
of equation (3), with the ψiα replaced by the corresponding φiα , and an overlap matrix

Siα, jβ(k) =
∑

n

exp(ik · Rn)

∫
φ∗

iα(r − Rn − bi)φ jβ(r − b j) d3r. (7)

Since the matrix (7) does not include a Hamiltonian term, it can be exactly decomposed into
on-site terms (which form a diagonal matrix if the φ are truly atomic-like) and two-centre
terms,

Si j
αβ(u) =

∫
φ∗

iα(r − u)φ jβ(r) d3r, (8)

which have the same symmetry as the corresponding two-centre Hamiltonian matrix
elements (5). These two-centre terms can be parametrized in the same way as the corresponding
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Hamiltonian, into terms denoted as Sabγ . This introduces another 14 SK parameters (ten if the
atoms are identical) for systems described in terms of s, p, and d orbitals.

The use of the non-orthogonal formalism has two advantages. The most obvious is that
the additional parameters make it easier to fit band structures in a large database. A less
obvious advantage comes from the nature of the Löwdin transformation of the atomic orbitals
φ into orthogonal wavefunctions ψ . By necessity the ψ have a longer range than the atomic
wavefunctions. Use of the atomic wavefunctions means that the two-centre SK parameters in
equations (5) and (8) can have a shorter range, usually only a few nearest-neighbour shells.
Thus the non-orthogonal matrix elements sample only the local environment of each atom,
making the development of transferable TB parameters easier.

3. Fitting of band structures

In the early works the aim with the SK scheme [1] was to use it as an interpolation method
to efficiently produce the eigenvalue spectrum εn(k) at a large number of k-points for a given
structure. This procedure was very useful for the determination of the Fermi surface and
the DOS. The approach proceeds as follows: for a given system for which first-principles
calculations are available one decides which orbitals to include in the Hamiltonian. For
example for transition metals one uses s, p, and d orbitals while for semiconductors such as Si
it suffices to use the s and p orbitals. The next question is how many neighbours (for crystals,
neighbour shells) to include in the Hamiltonian. We have found that including only the first
neighbours is not enough for an accurate fit. The inclusion of second and often third neighbours
is necessary. There are, in general, four different forms of a SK Hamiltonian, corresponding to
various approximations described in the previous section. These are the following: (a) three-
centre orthogonal, (b) three-centre non-orthogonal, (c) two-centre orthogonal, and (d) two-
centre non-orthogonal. The two-centre approximation reduces the number of SK parameters
and has the advantage that the parameters have a form independent of the crystal structure,
which makes them easily transferable from one structure to another. For this reason the two-
centre parameters are more frequently used, although a three-centre parametrization is more
accurate. A non-orthogonal Hamiltonian is preferable on physical grounds, and is also more
accurate since it employs almost twice as many SK parameters. However, the simplicity of an
orthogonal Hamiltonian is often an important advantage, as for example in coherent potential
approximation (CPA) calculations [20], where it considerably simplifies the formalism.

The determination of the SK parameters is usually done by a least-squares procedure in
which one tries to minimize the eigenvalue difference δεi between first-principles and SK values
for a large number of k-points. For the cubic crystals we generally use a regular k-point mesh
which has 89, 55, or 35 k-points in the irreducible Brillouin zone for fcc, bcc, and simple cubic
(sc) lattices, respectively. We use k-point meshes with similar densities for other structures,
e.g., hcp. Another issue which must be considered is the number of bands per k-point. The
procedure that we follow is to fit all the occupied states but also include empty states. For the
transition metals in particular we fit six bands for all k-points and we include the bands 7–9
only for the four high-symmetry points (�, X, L and W for fcc; �, H, N and P for bcc). This
ensures that the SK parameters originating from transition metal p orbitals maintain sensible
values. For covalent semiconductors (e.g., diamond structure materials) where only the s and
p orbitals are included, one fits a total of eight bands (four valence and four conduction). The
fit of the conduction band is not very accurate but the valence bands are very well fitted and
the gap is reproduced adequately. For the monatomic metals we have RMS deviations from
the first-principles results typically ranging from 1 mRyd for non-orthogonal Hamiltonians
to 5 mRyd for orthogonal. For the semiconductors (Si and Ge) the RMS errors are 8 and
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Table 1. Block-diagonalization of the 9 × 9 TB Hamiltonian at high-symmetry points of the fcc
lattice. The ordering of the states is s, p(x), p(y), p(z), d(yz), d(zx), d(xy), d(x2 −y2), d(3z2 −r2).

State k-point Matrix Degeneracy

�1 [H11] 1
�12 (0, 0, 0) [H88] 2
�15 [H22] 3
�′

25 [H55] 3

X1

[
H11 H19
H ∗

19 H99

]
1

X2 [H88] 1

X3

(
0, 0,

2π

a

)
[H77] 1

X′
4 [H44] 1

X5 [H55] 2
X′

5 [H22] 2

L1


 H11

1√
3

[H15 + H16 + H17]

1√
3

[H ∗
15 + H ∗

16 + H ∗
17] 1

3

{
H55 + H66 + H77

+ 2(H56 + H57 + H67)

}
 1

L′
2

(
π

a
,
π

a
,
π

a

)
[(1/3)(H22 + H33 + H44) + (2/3)(H23 + H24 + H34)] 1

L3

[
(1/2)[H55 − 2H56 + H66] (1/

√
2)[H58 − H68]

(1/
√

2)[H ∗
58 − H ∗

68] H88

]
2

L′
3 [(1/2)(H22 − 2H23 + H33)] 2

W1

(
0,

2π

a
,
π

a

) [
H11 H19
H ∗

19 H99

]
1

W′
2

[
H44 H48
H ∗

48 H88

]
1

W′
1 [H66] 1

W3

(
0,

π

a
,

2π

a

) [
H22 H27
H ∗

27 H77

]
2

30 mRyd for non-orthogonal and orthogonal Hamiltonians, respectively, when including six
bands in the fit (four valence and the lowest two conduction bands). Some improvement in the
conduction band could be achieved by including Si or Ge d orbitals [21].

An important issue in obtaining high-quality results in the SK method is the block-
diagonalization of the Hamiltonian. This procedure avoids the possibility of incorrectly
assigning the symmetry and angular momentum character of states. The reader can find
the details of this technique in the book by Papaconstantopoulos [10]. As an example, tables 1
and 2 show how the 9×9 matrix reduces to linear or quadratic equations for the high-symmetry
points in the fcc and bcc lattices, respectively.

3.1. Single-element materials

Reference [10] is a comprehensive source of SK parameters, including orthogonal and non-
orthogonal Hamiltonians and both two- and three-centre parameters. This book includes all
categories of SK parameters for 53 of the elements in the periodic table. Figures show the
energy bands and electronic DOS for both cubic and hexagonal materials. Reference [10] also
contains technical details and computer programs, as well as short discussions of trends and
characteristics of band structures across the periodic table.
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Table 2. Block-diagonalization of the 9 × 9 TB Hamiltonian at high-symmetry points of the bcc
lattice. The ordering of the states is s, p(x), p(y), p(z), d(yz), d(zx), d(xy), d(x2 −y2), d(3z2 −r2).

State k-point Matrix Degeneracy

�1 [H11] 1
�12 (0, 0, 0) [H88] 2
�15 [H22] 3
�′

25 [H55] 3

H1 [H11] 1

H12

(
0, 0,

2π

a

)
[H88] 2

H15 [H22] 3
H′

25 [H77] 3

N1

(
π

a
,
π

a
, 0

) [ H11 H17 H19
H ∗

17 H77 H79
H ∗

19 H ∗
79 H99

]
1

N4 [H88] 1

N′
1 [(1/2)(H33 + 2H34 + H44)] 1

N2 [(1/2)(H66 − 2H67 + H77)] 1

N3

(
0,

π

a
,
π

a

)
[(1/2)(H66 + 2H67 + H77)] 1

N′
3 [H22] 1

N′
4 [(1/2)(H33 − 2H34 + H44)] 1

P1 [H11] 1

P3

(
π

a
,
π

a
,
π

a

)
[H88] 2

P4

[
H22 H26
H ∗

26 H66

]
3

It should be emphasized that the work in [10], like the work described in sections 3.2
and 3.3 below, concentrates on fitting the SK parameters to the band structure of the ground
state of each material. The issues of transferability of the SK parameters to other structures,
differing in volume or symmetry, and the inclusion of total-energy calculations are taken up
in section 4, where we describe the latest NRL-TB method.

3.2. Binary compounds

The SK interpolation scheme has also been applied to binary compounds. The size of the
secular equation in this case will depend upon the number of atoms in the unit cell and the
number of orbitals that we take for each atom. For example in a typical B2 (CsCl) structure
material such as TiNi, which involves two transitions metals, we utilize an 18×18 Hamiltonian
that includes s, p, and d orbitals on both sites. Figure 1 shows a comparison of augmented plane
wave (APW) [23, 24] and SK energy bands for B2 (CsCl structure) TiNi. The agreement for the
first 11 bands, which includes both the Ti and Ni d bands, is impressive. More details on these
calculations, including the block-diagonalization procedure, are given in [22]. In materials
such as the B1 (NaCl) structure hydrides, e.g. PdH, one only incorporates the 1s H orbital,
and so a 10 × 10 Hamiltonian is needed [25]. For like-structured carbides and nitrides we
include 9spd orbitals from the transition metal and the 4sp orbitals of C or N, for a Hamiltonian
of dimension 13 × 13. As an example, figure 2 shows the APW and SK band structures of
B1-phase NbC. The first nine bands are so well fitted that the solid and broken curves cannot
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Figure 1. Comparison of the first-principles APW band structure of B2 (CsCl structure) TiNi (solid
curves) with the band structure calculated using the SK parametrization (broken curves) of [22].

be distinguished. A complete set of SK parameters, band structures, and DOS figures for
the paramagnetic NaCl structure hydrides, carbides, nitrides, and oxides can be found in our
electronic structure database1. We caution the reader interested in using our SK parameters
to utilize our programs, because changes in the signs of the SK parameters often occur. We
are not limited to fitting APW band structures. Figure 3 shows the SK band structure of GaAs
compared to an empirical pseudopotential calculation. The valence band is fitted perfectly
while the conduction band is not quite so good, as is common in calculations using only s
and p orbitals. We have also applied this method to other two-component structures such as
fluorite (CaF2), where we have used an 11 × 11 matrix within the CPA to study the electronic
structure of disordered transition metal dihydrides [26]. Of course, in the CaF2 structure the
secular matrix can be 27×27 if all orbitals are included. Similarly, the Cu3Au structure would
involve a 36 × 36 matrix.

3.3. Ternary compounds

Our approach has also been extended to the cubic perovskite (E21) structure ABC3 where the
Hamiltonian size is in general 45×45. In practice we have confined ourselves to oxides, which
reduces the matrix size to no more than 30 ×30. We have applied this method to the following
systems: BaSnO3, BaSbO3, BaPbO3, BaBiO3, KBiO3, SrTiO3, LaMnO3, and SrRuO3. In
these systems we have reduced the size of our Hamiltonian depending on our observations
on the participation of various orbitals in forming the band structure. For example the O s
orbital does not contribute to the valence states and can be omitted in constructing the SK
Hamiltonian. We also found that only the s orbital of Ba and the s and p orbitals of Pb need
to be retained for the first four compounds. Details of these calculations are given in [27]. A
comparison of APW and SK bands for SrTiO3 is shown in figure 4. We note that the fit for this
perovskite structure, with RMS errors of about 15 mRyd, is not as good as for the diatomic
materials, where we had RMS errors averaging less than 5 mRyd.

For LaMnO3 and SrRuO3 we find accurate Hamiltonians constructed by utilizing only
the d Mn and Ru orbitals and the O p orbitals. In addition, for the above manganites and

1 The NRL electronic structure database is available online at http://cst-www.nrl.navy.mil/es-access.html
(Registration is required.)
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Figure 2. Comparison of the first-principles APW band structure of B1 (NaCl structure) NbC
(solid curves) with the band structure calculated using an SK parametrization.
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Figure 3. Comparison of an empirical pseudopotential band structure of GaAs (dots) to the band
structure obtained by SK parametrization (solid curve).

ruthenates we were able to obtain good fits of the spin-polarized bands, with only the on-site
SK parameters changing between the two spins. Details of these calculations may be found
in [28] and [29]. We note that [29] presents a very accurate parametrization for the body-
centred tetragonal structure of Sr2RuO4 and applies it to the calculation of the Hall coefficient.

3.4. High-temperature superconductors

We have also constructed accurate TB Hamiltonians for the high-temperature superconductors
La2CuO4 and YBa2Cu3O7 by fitting to full-potential linear augmented plane wave
(LAPW) [30, 31] results. While other investigators have proposed simplified models based
on isolated Cu–O planes, our approach accounts for the three-dimensional character of the
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Figure 4. Comparison of the APW (solid curve) and SK (dashed curve) band structures of SrTiO3
perovskite.

bands. These calculations support the hypothesis of a rigid band lowering of the Fermi level,
εF , upon substitution of Ba for La in La2CuO4. This, in turn, enhances N(εF ), the electron
DOS at the Fermi level. The calculations also show that oxygen vacancies lower εF and raise
N(εF ). Details are given in [32] and [33].

4. The NRL tight-binding method

Up to this point we have discussed TB parametrizations of the band structure alone. Total-
energy information is not given by these calculations, although a band energy can be readily
determined from the sum of the eigenvalues over the occupied states. However, in single-
particle band theory this sum is only a partial contribution to the total energy. In the Kohn–Sham
single-particle DFT ansatz [16], the total energy is given by

E =
∫

d3k

(2π)3

∑
n

εn(k) + F[n(r)], (9)

where the integral is over the first Brillouin zone, the sum is over occupied states, and F[n(r)]
is a functional of the density which includes the repulsion of the ionic cores, correlation effects,
and part of the Coulomb interaction. Note that the value of the integral depends upon the choice
of zero for the Kohn–Sham potential vK S(r) which generates the eigenvalue spectrum:

−∇2ψn(r) + vK S(r)ψn(r) = εnψn(r). (10)

This choice is arbitrary. In many methods the potential is chosen such that the Fermi level is at
zero energy. Since the width of the occupied states tends to increase with increasing pressure,
the eigenvalue sum in (9) becomes more negative, and the function F[n(r)] must be repulsive.
However, first-principles band structure algorithms such as the APW [23, 24] or linearized
augmented plane wave (LAPW) [30, 31] methods tend to choose the zero of the potential to be
near the bottom of the occupied valence band. In this case, the eigenvalue sum increases with
increasing pressure, i.e., it is repulsive, and F[n(r)] must represent an attractive function.

In many TB methods it has become customary to make the first choice above and add a
repulsive potential, representing F[n(r)], to the band energy. This sum represents the total
energy of the system. There are many variants of this approach with some of them resembling
the embedded atom method (EAM) [34, 35]. We will only mention here the second-moment
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approximation (SMA) because of our own work in this area. In our implementation of the
SMA [36–38] we determine the potential by fitting to the volume dependence of the total energy
computed by carrying out first-principles APW calculations instead of fitting to experimental
quantities, as other workers do.

In the rest of this section will concentrate on the method developed at NRL by Cohen,
Mehl, and Papaconstantopoulos [11, 12]. In this method we shift the potential vK S in (10) by
an amount

V0 = F[n(r)]/Ne, (11)

where Ne is the number of electrons in the unit cell. Then the total energy of the system is

E =
∫

d3k

(2π)3

∑
n

εn(k) + F[n(r)] =
∫

d3k

(2π)3

∑
n

εn(k) + Ne V0

=
∫

d3k

(2π)3

∑
n

[εn(k) + V0]. (12)

If we now define a shifted eigenvalue,

ε′
n(k) = εn(k) + V0, (13)

then to get the total energy we just sum the shifted eigenvalues of the occupied states:

E =
∫

d3k

(2π)3

∑
n

ε′
n(k). (14)

Note that V0 depends upon the structure of the crystal, as well as the original method for
determining the energy zero. As an aside, we note that the ε′

n(k) are in some sense ‘universal’.
That is, if any two band structure methods are sufficiently well converged, they will give
the same total energy (9), and the eigenvalues derived from the two methods will differ by
only a constant. Then the definition of V0 for each method will be such that the shifted
eigenvalues ε′

n(k) are identical. Further insights into this procedure are given by McMahan
and Klepeis [39]. This paper also contains a thorough extension of TB theory to include f
orbitals.

In the NRL method, we construct a first-principles (LAPW or APW) database of
eigenvalues εn(k) and total energies E for several crystal structures at several volumes. (For
example, for the transition metals we typically use five volumes each for both the fcc and bcc
crystals.) We then find V0 for each system, and shift the eigenvalues. Next, we attempt to find
a set of parameters which will generate non-orthogonal, two-centre SK Hamiltonians which
will reproduce the energies and eigenvalues in the database.

4.1. The tight-binding parameters—elemental systems

We assume that the on-site terms are diagonal and sensitive to the environment. For single-
element systems we assign atom i in the crystal an embedded-atom-like ‘density’

ρi =
∑

j

exp(−λ2 Ri j)F(Ri j), (15)

where the sum is over all of the atoms j within a range Rc of atom i ; λ is our first fitting
parameter, squared to ensure that the contributions are greatest from the nearest neighbours;
and F(R) is a cut-off function,

F(R) = θ(Rc − R)/{1 + exp[(R − Rc)/� + 5]}, (16)
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where θ(z) is the step function. Typically we take Rc between 10.5 and 16.5 Bohr
(1 Bohr = 0.529 177 249 Å) and � between 0.25 and 0.5 Bohr.

We then define the angular-momentum-dependent on-site terms by

hi� = a� + b�ρ
2
3 + c�ρ

4
3 + d�ρ

2, (17)

where � = s, p, or d. These (a, b, c, d)� form our next twelve (12) fitting parameters.
In some cases, notably that of vanadium [12], we have split the d on-site term into a term

with t2g symmetry (xy, yz, and zx orbitals) and a term with eg symmetry (x2 − y2 and 3z2 −r2

orbitals). This gives us an additional four parameters, raising the total on-site parameter count
from 13 to 17. While this does improve the ability of the parametrization to describe cubic
phases, it leads to problems in non-cubic phases such as hcp, where the t2g–eg splitting is
meaningless. For most elements we therefore fit only to a single d on-site parameter. A better
formulation would be to include crystal field effects in the formulation of the on-site terms
in the manner of Mercer and Chou [17] and Cohen et al [18]. For an spd system there are
ten such on-site parameters, many of which can be determined only by studying systems with
very low symmetry. The philosophy of the NRL method is to find a good transferable set of
parameters using only high-symmetry first-principles calculations. For this reason we have
decided to include only the limited angular momentum dependence (17) in our database.

In the spirit of the two-centre approximation, we assume that the hopping integrals depend
only upon the angular momentum dependence of the orbitals and the distance between the
atoms. Slater and Koster [1] showed that all two-centre (spd) hopping integrals can then be
constructed from ten independent parameters, the SK parameters, H��′µ, where

(��′µ) = ssσ, spσ, ppσ, ppπ, sdσ, pdσ, pdπ, ddσ, ddπ, and ddδ. (18)

We assume a polynomial × exponential form for these parameters:

H��′µ(R) = (e��′µ + f��′µ R + g��′µ R2) exp(−h2
��′µ R)F(R), (19)

where R is the separation between these atoms and F(R) is the cut-off function (16). The
parameters (e��′µ, f��′µ, g��′µ, h��′µ) constitute the next forty (40) fitting parameters.

Since this is a non-orthogonal calculation, we must also define a set of SK overlap
functions. These represent the overlap between two orbitals separated by a distance R. They
have the same angular momentum behaviour as the hopping parameters (18). We have used
two different parametrizations for the overlap parameters. The first is identical in form to (19):

S��′µ(R) = (p��′µ + q��′µ R + r��′µ R2) exp(−s2
��′µ R)F(R). (20)

The parameters (p��′µ, q��′µ, r��′µ, s��′µ) make up the final 40 fitting parameters for a
monatomic system, giving us ninety-three (93) parameters in all. (Some of these, particularly
the parameters with � = d or the g- and r -parameters, may not be used for a particular
calculation.)

If the basis functions which generate the overlap (20) are normalized, then in general we
must have

|S��′µ(R)| < 1, R > 0, (21)

and

S��′µ(0) = δ��′ . (22)

Because we have no true underlying TB basis functions, and because we determine the
parameters (p��′µ, q��′µ, r��′µ, s��′µ) from a limited set of data, the parameters (20) do not
necessarily obey the condition (21) for atomic separations which are not in our database. In
particular, it is unlikely that our fitted parametric form (20) will ever obey (22). This does not
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lead to problems so long as we apply these parameters to structures near those in the fitting
database. However, it frequently happens that we would like to study structures outside the
database, particularly those where two or more atoms are relatively close together, as occurs at
an interstitial substitution. In that case, the violation of (21) can lead to unphysical behaviour
of the overlap matrix, which is required to be positive definite. To help alleviate this problem,
we have defined an alternate set of overlap parameters,

S��′µ(R) = (δ��′ + p��′µ R + q��′µ R2 + r��′µ R3) exp(−s2
��′µ R)F(R), (23)

which has the virtue that it satisfies (22) and does not change the parameter count. We have
used overlaps of type (23) for our parametrizations of C [40], Si [21], and Ge [41]. While
somewhat more satisfactory than (20), this form does not necessarily satisfy condition (21),and
so may still lead to an unphysical overlap matrix. We are considering alternative methods of
specifying the overlap parameters which should guarantee that the overlap matrix will always
be positive definite.

As noted above, the 93 (or 97) parameters defined by (15), (17), (19), and (20) or (23)
are to reproduce the contents of the first-principles database. We do this by minimizing
a weighted least-squares penalty function, using the finite-difference Levenberg–Marquardt
algorithm [42]. The function weights deviations from the correct total energy 100–500 times
more than deviations from the correct band structure, and also can include terms which restrict
the range of the exponential parameters and which penalize overlap matrices which have very
small eigenvalues, a precursor to a non-physical overlap matrix.

We have computed TB parameters for the alkaline-earth, transition, and noble metals [12];
aluminium, gallium, and indium [43]; carbon [40] and silicon [21, 40]; germanium [41];
arsenic, tin, antimony, and bismuth [44]; lead [45] and magnesium [46]. The parameters are
available via the Worldwide Web at http://cst-www.nrl.navy.mil/bind/. We will discuss the
performance and transferability of these parameters in the sections below.

Methodologies similar to ours have been pursued by Xu et al [47] for C and Si, by Haas
et al [48] for Mo, by Xie and Blackman [49] for Pd and Ag, and by Barreteau et al [50, 51]
for Rh. The main difference between those works and ours is that they utilize orthogonal
Hamiltonians. The first two methods also differ from ours in that they use a repulsive potential
in their treatment of the total energy, rather than the shift (13) and environmentally dependent
on-site parameters (17). Barreteau et al use our procedure with an orthogonal basis. Their
results for Rh are in good agreement with ours, except that their surface energies are not well
reproduced by the orthogonal Hamiltonian. In addition, Barreteau et al have shown that this
procedure is viable in the regime of small clusters.

4.2. The tight-binding parameters—multi-component systems

The extension of the formalism of section 4.1 to multi-component systems includes both trivial
and complex changes to the formalism. The hopping and overlap parameters change only
slightly. For like-atom interactions (A–A, B–B, etc), we still have ten hopping and overlap
parameters (18) and continue to use the parametrization forms (19) and (20) or (23). For
dissimilar atoms (A–B, B–C, etc), we note that the interaction between an s orbital of atom
A and a p orbital of atom B is not the same as the interaction between a p orbital of atom A
and an s orbital of atom B. This means we must define an additional four SK parameters for
dissimilar-atom interactions:

(��′µ) = psσ, dsσ, dpσ, and dpπ. (24)

We parametrize these additional hopping integrals using the form (19). For the overlap
integrals, we note that although the overlap between any basis function of atom A and a basis
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function of atom B must satisfy (21), it is not necessary to satisfy (22). We therefore use the
parametrized form (20) for all 14 dissimilar-atom overlap integrals. Thus for an N-component
system there are 28N(N − 1) parameters (28 = 14 × 4/2) characterizing the dissimilar-atom
hopping (or overlap) parameters, and 40N parameters characterizing the like-atom parameters.

The environmental sensitivity of the on-site terms makes for a more complicated
modification. We have tried several different methods for determining the on-site parameters.
Here we describe the current method, noting that it is subject to change as we gain more
experience with multi-component systems.

In the following we assume that each atom i has an associated atom type ĩ . Then we
define the density on atom site i from atoms of type j̃ to be

ρi j̃ =
∑

j

exp(−λ2
j̃
Ri j)F(Ri j ). (25)

There are N parameters λ j̃ for an N-component system.

The on-site terms for atom i then include contributions from all atom types j̃ :

hi� = aĩ� +
∑

j̃

[
bĩ j̃�ρ

2
3

j̃
+ cĩ j̃�ρ

4
3

j̃
+ dĩ j̃�ρ

2
j̃

]
, (26)

where the sum is over all of the atom types in the system. Since in general bĩ j̃� �= b j̃ĩ�, there
will, in general, be 3N parameters aĩ�, and 9N2 parameters (b, c, d)ĩ j̃�. Note that (25) and (26)
reduce to (15) and (17) if N = 1.

If we add up all the parameters, we find that there are N(28 + 65N) parameters to be fitted
in an N-component system. Thus for a binary system we must determine 316 parameters. If
we split the d on-site terms into t2g and eg components, this becomes N(29 + 68N), or 330 for
N = 2.

We have determined parameters for several sets of binary systems, including NbC, CoAl,
and PdH [8, 52]. We will describe the properties of these parametrizations in the sections
below.

5. Equation of state

Having determined our TB parameters we first proceed in calculating the equation of state
(energy versus volume) for various structures. For the structures that we fit (fcc and bcc in
the case of transition metals) the equation of state is very close (better than 1 mRyd accuracy)
to that of the LAPW data. For other structures such as sc, hexagonal close packed (hcp), and
diamond we usually find the correct structural energy ordering. In particular, for those non-
magnetic materials that crystallize in the hcp structure we predict that hcp is the ground state,
even though we included no hcp structures in our first-principles database. Our parameters
for Mn even correctly describe the α-Mn structure as the ground state [53]. Similarly, the TB
procedure finds other unstable or metastable structures at energies well above the ground state,
consistent with independent LAPW calculations. However, for these structures the agreement
between TB and LAPW is less impressive.

An illustration of one of our equation-of-state results is shown in figure 5 for titanium.
The original parameters in [12] show an hcp ground state, but give a metastable hexagonal ω

(Strukturbericht symbol C32) phase which is too high in energy. To correct this, we performed
full-potential LAPW calculations in the generalized gradient approximation (GGA) [54], where
we found the C32 and A3 (hcp) phases to be nearly degenerate. In our TB result the C32 phase
is slightly lower in energy than the hcp phase, which is consistent with our LAPW results if
not with experiment. We can ‘correct’ our TB binding parameters such that the hcp phase is
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Figure 5. The NRL-TB equation of state for Ti in a variety of structures. C32 = hexagonal ω,
A3 = hcp, C19 = α-Sm, A3′ = α-La, A1 = fcc, A2 = bcc, BCT5 = body-centred tetragonal with
fivefold coordination.

the ground state. When we do so [55], we find that these parameters predict the existence of
the high-pressure orthorhombic γ -Ti phase recently observed experimentally [56].

In either case, when we look at the close-packed structures, we see that the ordering is
A3 (hcp, stacking ABAB), C19 (α-Sm or ‘9R’, stacking ABCBCACAB), A3′ (α-La, stacking
ABACABAC), and finally A1 (fcc, stacking ABCABC). Thus the energy goes up as the stacking
becomes more fcc-like, as one would expect.

We can also study crystal structures of lower symmetry. An example is the Bain
path [57, 58] which occurs under a volume-conserving tetragonal strain. Figure 6(a) shows the
Bain path for Cu where one notes a smooth path from the fcc ground state to the unstable bcc
phase. Note that the curvature around the fcc phase is related to the elastic constant C11 − C12

of Cu. We can also apply this technique to other strains. In figure 6(b) we perform a trigonal
strain on gold, changing the angle between the primitive vectors. In this figure we have an fcc
lattice for θ = 60◦, a sc lattice for θ = 90◦, and a bcc lattice for θ = 109.47◦. The curvature
around θ = 60◦ is related to the elastic constant C44 of gold. Note that this figure shows that
the sc phase of gold is elastically unstable.

6. Elastic constants

The procedure for calculating elastic constants from first-principles calculations is described
in detail by Mehl et al [59, 60]. The same procedure is used in our TB calculations. Briefly,
one imposes an external strain on the crystal and calculates the energy as a function of strain.
For cubic materials the tetragonal shear modulus C11 − C12 is found by applying a volume-
conserving orthorhombic strain and the trigonal shear modulus C44 from a volume-conserving
monoclinic strain. We summarize our results for the cubic structures in figure 7, which shows
our TB and LAPW [12, 43] results together with the experimental values [61]. The Ci j -values
for Fe and Ni are derived from a spin-polarized extension to the NRL-TB method [62] which
will be discussed in section 13. The calculation of elastic constants is a very sensitive test of our
method because the results depend on very small differences between the equilibrium and the
distorted energies. We report results for Ci j at the experimental volume, as that gives results
which are usually in somewhat better agreement with experiment [60]. Figure 7 shows that our
TB results are in very good agreement with both the first-principles LAPW calculations and
experiment. We have also generated elastic constants for the hcp materials. These results are
discussed in [46, 55, 60]. Generally, the hcp elastic constant calculations are inferior to those
for the cubic materials, at least when no hcp structures are included in the fitting database.
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Figure 6. The NRL-TB total-energy calculations for strained unit cells, at the equilibrium
experimental volume. The error bars give an estimate of the errors in the calculation due to
k-point sampling. The straight lines indicate high-symmetry structures. The curves are spline fits
through the data points. (a) Energy as a function of c/a in face-centred tetragonal Cu, i.e., along
the Bain path. The local minimum to the left of the bcc structure is a tenfold-coordinated structure
which is elastically unstable to shears in other directions. (b) Energy as a function of angle in
rhombohedral Au. The bcc structure is elastically unstable to a tetragonal shear, as in (a).
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Figure 7. Elastic constants for many cubic metals, obtained from both TB and first-principles
results [12, 43] and compared to experiment [61].

7. Phonon frequencies

We have determined phonon frequencies with the NRL-TB model by several methods [11, 63].
In the frozen phonon method [64], we create a supercell which can support a commensurate
phonon mode of wavevector q. Atoms are displaced from their equilibrium positions according
to a specified polarization direction and the phase of this wave at the atomic position. The
dynamical matrix at q is determined from the second derivative of the total energy as a function
of the amplitude of the phonon wavevector. In principle this leads to a 3N × 3N matrix, but
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Table 3. High-symmetry phonon frequencies of copper and gold, found by using the frozen
phonon approximation [64], the NRL-TB parameters, and the full-potential LAPW method for
gold. Symmetries are labelled according to the notation of Miller and Love [67, 68]. We also
compare our results to experiment. All calculations were performed at the indicated experimental
lattice constant, and all frequencies are in THz.

Copper Gold
a = 3.61 Å a = 4.08 Å

Symmetry Polarization NRL-TB Experiment [69] NRL-TB LAPW [63] Experiment [70]

X3 Longitudinal 7.25 7.27 5.29 4.43 4.60
X5 Transverse 5.13 4.74 2.87 2.72
L2 Longitudinal 7.93 7.30 5.35 4.53 4.69
L5 Transverse 3.47 3.42 1.91 1.85
W2 Longitudinal 4.75 4.95 2.66 2.63
W5 Transverse 5.70 6.10 4.01 3.62

application of symmetry [65]2 will reduce the size of the matrix at highly symmetric points in
the Brillouin zone. We did not consider anharmonic contributions to the phonon frequency [66],
but this is a simple addition to the method.

Table 3 shows the phonon frequencies of copper and gold at several high-symmetry points
in the fcc Brillouin zone, labelled using the notation of Miller and Love [67, 68]. We compare
to LAPW results for gold [63] and to experiment [69, 70]. For this calculation we used the
gold parameters described in [63], and calculated copper parameters using the same method3.
Most frequencies are found to be within 10% of the experimental value, and the RMS error
over all these points is 0.6 THz. If more accurate phonon frequencies are required, one can
expand the first-principles database described in [63] to include first-principles LAPW frozen
phonon calculations.

The frozen phonon method can also be applied to multi-atom unit cells. There are
several different modes at each wavevector, so we use the program FROZSL to determine
the appropriate supercell for each mode. In table 4 we show NRL-TB results for the phonon
spectra of diamond structure C and Si [21] compared to experiment [71, 72], using the TB
parameters of [40]. (See section 11 for more details about these parametrizations.) The largest
disagreement between theory and experiment is 5.5 THz, and the RMS error is 1.8 THz.

The tight-binding molecular dynamics (TBMD) code, written by Kirchhoff4, can compute
forces in supercells. This allows us to directly calculate the real-space dynamical matrix
by moving one atom in a large supercell, calculating the forces on the other atoms in the
supercell, and differentiating to calculate the dynamical matrix. This matrix can then be
Fourier transformed to calculate the phonon frequencies at wavevector q [73]. This can be
applied to calculations at arbitrary q if the supercell is large enough that the forces vanish for
atoms far from the displaced atom. We have previously shown the results of this calculation
for gold [63]. Here we present similar results for copper in figure 8.

Finally, we can determine the phonon spectrum at finite temperature from a molecular
dynamics (MD) calculation by calculating the velocity–velocity autocorrelation function and
performing a Fourier transform. This technique is discussed in [63] and section 12.

2 We use the program FROZSL (http://128.187.202.55/∼stokesh/frozsl.html) to determine phonon frequencies for
complex crystals. For simple unit cells, see http://cst-www.nrl.navy.mil/∼mehl/phonons/
3 The NRL-TB parameters used in this study for copper and gold are available at
http://cst-www.nrl.navy.mil/bind/cu par 99 and http://cst-www.nrl.navy.mil/bind/au par 99, respectively.
4 For a complete description of the TBMD program, see http://cst-www.nrl.navy.mil/∼kirch/tbmd/
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Figure 8. Phonon frequencies of copper, at the experimental lattice constant, computed by Fourier
transformation and diagonalization of the real-space dynamical matrix [63]. The points are from
experiment [69].

Table 4. Phonon frequencies of diamond structure C and Si, calculated using the frozen phonon
approximation and the NRL-TB parameters [40] and compared to experiment. Symmetries are
labelled according to the notation of Miller and Love [67, 68]. Under the column labelled
polarization, ‘L’ is longitudinal, ‘T’ is transverse, ‘A’ is acoustic, and ‘O’ is optical. Thus ‘TO’ is
a transverse optical mode. All frequencies are given in THz.

Carbon Silicon
a = 3.567 Å a = 5.430 Å

Symmetry Polarization NRL-TB Experiment [71] NRL-TB Experiment [72]

�′
25 39.3 39.9 15.9 15.5

X1 LA 34.2 35.5 12.1 12.3
X3 TO 29.8 32.1 15.2 13.9
X4 TA 24.7 24.2 4.8 4.5
L1 LO 39.3 36.6 16.7
L′

2 LA 36.5 31.0 10.0
L3+ TA 17.6 16.9 3.8 3.4
L3− TO 35.3 36.2 16.0 14.7
W1 28.7 30 11.1 12.1
W2 33.3 35 15.4 14.7

27.9 28 6.4 4.2

8. Vacancies

To calculate vacancy formation energies we have used a supercell approach [74, 75]. One atom
in the supercell is removed and neighbouring atoms are allowed to relax around this vacancy
while preserving the symmetry of the lattice. We eliminate the vacancy–vacancy interaction
by using a large supercell. We found that a unit cell with 128 atoms was large enough to
eliminate vacancy–vacancy interactions. This size cell is computationally trivial for our TB
scheme, but prohibitively slow with first-principles methods such as LAPW.

The vacancy formation energy for an N-atom supercell is given by the expression

Ev f (N) = E(N − 1, 1) − N − 1

N
E(N, 0), (27)

where E(N, M) is the energy of an (N+M)-site supercell containing N atoms and M vacancies.
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Table 5. Vacancy formation energy (in eV) for selected elements obtained using the NRL-TB
method, along with comparisons to experiment, where available. All calculations are performed in
128-atom supercells fixed at the experimental volume, with internal relaxation. Unless otherwise
noted, calculated results are from [12] and experimental results from [76].

Element TB result First principles Experiment

Al 0.40 [43] 0.56 [74], 0.84 [75] 0.66 [77]
Cu 1.18 1.41 [79], 1.29 [80] 1.28–1.42
Nb 2.82 2.65 ± 0.03
Mo 2.46 3.0–3.6
Rh 3.35 2.26 [80] 1.71 [78]
Pd 2.45 1.57 [79] 1.85 ± 0.25
Ag 1.24 1.20 [79], 1.06 [80] 1.11–1.31
Ta 2.95 2.9 ± 0.4
W 6.43 4.6 ± 0.8
Ir 2.17 1.97 [78]
Pt 2.79 1.35 ± 0.09
Au 1.12 0.89 ± 0.04

Thus

E(N, 0) = N Ebulk (28)

where Ebulk is the energy of one atom in the bulk material. A selection of our vacancy
formation results is shown in table 5, where we compare to both experimental [76–78] and
first-principles [74, 75, 79, 80] values. It is clear that the effect of relaxation is small.
Comparing to experiment we note that we reproduced the trend that the noble metals have
vacancy formation energies of about 1 eV while the bcc transition metals have much larger
values. Quantitative agreement between TB results and experiment is unlikely, partly due to
large deviations between different experiments.

The calculation of vacancy formation energies presents us with an opportunity to
demonstrate the efficiency of the TB method. Figure 9 shows the time needed to calculate the
formation energy of copper as a function of supercell size, using both the full-potential LAPW
method and our TB method. We see that the TB method is approximately 1000 times faster
than the LAPW calculation for all unit-cell sizes.

9. Surfaces

Chadi [83, 84] pioneered work on semiconductor surfaces, applying total-energy minimization
to the determination of the atomic geometries of the (110) surface of Si, Ge, GaAs, and other
compound semiconductors. He also studied aspects of the structure and energetics of high-
Miller-index Si surfaces, obtaining interesting results for the ideal and reconstructed vicinal
surfaces. The NRL-TB scheme was also applied to Si [21], giving high-quality results for
energetics of the low-index Si surfaces.

We calculate the energy needed to form a clean surface by applying a supercell technique:
cleave the crystal along a plane, creating two identical free surfaces. Repeat this periodically
in the direction perpendicular to the surfaces. We separate the slabs by a large region of
vacuum, greater than the TB cut-off distance Rc (see (16)), which prohibits electrons from
hopping between slabs. We make the slabs thick enough that in the centre of the slab we have
the properties of the bulk material and the two surfaces of the slab do not interact with each
other. This is easy to do within a TB simulation, and much more difficult in a first-principles
calculation. Using the above requirements we find that for non-magnetic fcc and bcc metals a
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Figure 9. Computational time needed to calculate the vacancy formation energy of copper as a
function of supercell size. The bottom line shows the time needed by the NRL-TB method. The
top line shows the time needed for a self-consistent LAPW calculation. The LAPW results were
only computed for cells up to 16 atoms. The line from 32-atom cells up is an estimate assuming
N3-scaling. These calculations were done using a single 200 MHz processor. Modern systems
will reduce the time, but should maintain the ratio between TB and LAPW results.

slab of 25 atomic layers is sufficient. To ensure convergence with respect to k-points we used
up to 91 k-points in the two-dimensional Brillouin zone. The surface energy is defined as the
energy required to create a unit area of new surface and is given by the expression

γs = 1

2A
(Eslab − N Ebulk) (29)

where A is the area occupied by one unit cell on the surface of the slab, Eslab is the total
energy of the slab, N is the number of atoms in the unit cell, and Ebulk is the energy of one
atom in the bulk. These calculations were done at the equilibrium lattice parameter without
relaxation or reconstruction at the surface. Our results are shown in figure 10. For comparison
with experiment we use an ‘average’ face extrapolated to T = 0 K. Our results are in good
agreement with experiment [81, 82], unlike the EAM [85, 86] results which are significantly
lower than experimental ones. For the fcc metals we find that the close-packed surfaces are
the most stable, i.e.,

γs(111) < γs(110) < γs(100). (30)

For the bcc metals,

γs(110) < γs(100) < γs(111). (31)

10. Stacking faults and ductility

The stability of stacking faults on slip planes of a crystal is directly connected to the mobility
of dislocations on those planes. As discussed by Rice and co-workers [87–89], the ductility of
a metal is at least partially determined by the competition between dislocation motion and the
energy needed to form a new crystalline surface, γs (29). In a close-packed crystal, a stacking
fault is produced by the translation of one surface of a crystal across the face of the other surface.
In an fcc crystal, we consider the lowest-energy (111) surface (30). Then a typical stacking
fault is along the 〈121〉 direction. A stable stacking fault results when the displacement reaches
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Table 6. Intrinsic stacking fault energy γis , surface energy γs , unstable stacking fault energy
γus , and Rice ductility parameter D (32) for the fcc metals, obtained from the NRL-TB method.
Energies are expressed in mJ m−2.

Element γis [90] γs [12, 43] γus [90] D (equation (32))

Al 96 870 176 1.50
Cu 18 1730 162 3.24
Rh 344 2460 714 1.04
Pd 166 1570 439 1.08
Ag 29 1140 108 3.20
Ir 569 2590 902 0.87
Pt 373 2510 497 1.53
Au 50 1480 129 3.48
Pb 58 888 166 1.59

a value of a/
√

6, where a is the fcc lattice constant. The stacking in the 〈111〉 direction at
that point looks like · · · ABCABC|BCABCA · · ·, where the ‘|’ represents the stacking fault.
In this region the stacking is hcp-like (BCBC) rather than fcc-like (ABCABC). The energy
associated with the stacking fault is just the energy difference per unit area of interface between
this system and the perfect crystal, and is denoted as γis , the intrinsic stacking fault energy.

Since the perfect fcc crystal is the lowest energy of the solid, and the intrinsic stacking
fault is metastable, it follows that there must be some maximum energy achieved as we move
the stacking fault along the 〈121〉 direction. This maximum is denoted as γus , the unstable
stacking fault energy. Rice [88] has shown that we can use the γus and the surface energy γs

to construct a ‘ductility parameter’,

D = 0.3
γs

γus
. (32)

When D > 1, systems tend to be ductile.
We have used (32) and the NRL-TB method to study the ductility of the fcc metals [90].

Table 6 shows the calculated values of γs , γus , D, and, for completeness, γis for the fcc metals,
obtained using the NRL-TB parameters. Note that the obviously ductile metals (gold, silver,
lead) have relatively large values of D. The less ductile metals (Ir, Rh, Pd) have smaller values.
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Figure 11. Energy of various carbon structures as a function of nearest-neighbour separation.
Curves labelled C2, C3, C4, and C60 represent the corresponding isolated molecules.

11. Semiconductors

The NRL-TB method has also been applied to semiconductors such as C [40], Si [21, 40],
and Ge [41]. Our carbon parameters include only the four sp orbitals on each atom. For Si
and Ge we generated two sets of parameters: one with only sp orbitals, and one with s, p,
and d orbitals. The four sp parameters (ssσ , spσ , ppσ , and ppπ) satisfy the sign convention
of Harrison [7]. The fitting procedure for semiconductors deviates from the procedure we
used for most metals. For most of the transition and noble metals we were able to get good
TB parameters by fitting to only the bcc and fcc structures. For carbon we also included fits
to the sc, diamond, and graphite structures, as well as the C2 dimer. In figure 11 we show
our results for the total energy of carbon as a function of the nearest-neighbour distance in
several structures, including molecules that were not fitted. The energy difference between
the diamond and graphite structures is nearly zero, consistent with our LAPW results. It is
particularly noteworthy that the energetics and structure of C60, which was not fitted, is in very
good agreement with independent first-principles calculations. In addition, our calculated band
structure of an fcc C60 crystal is in very good agreement with first-principles calculations [91].

We have also done an extensive TB study of Si [21], for which we fitted the fcc, bcc, sc,
and diamond structures. We obtained equations of state for many other structures, including
the high-pressure β-Sn phase and the low-density clathrate phase, which were found to be in
good agreement with first-principles results. In [21] we present details of our Si study that
demonstrate that our approach is accurate for the calculation of surface and interstitial energies,
as well as phonon spectra. In table 7 we compare the TB, LAPW, and experimental elastic
constants of C, Si, and Ge. We have also computed phonon frequencies for C and Si, as was
shown in table 4. Our methodology has also been applied to other covalently bonded materials
such as tin [44].

12. Molecular dynamics

The NRL-TB method has been extended to the regime of MD simulations by Kirchhoff,
who built a parallel MD code. This code uses the environment- and bond-length-dependent
parameters described in section 4 and calculates the electronic structure, total energy, and
atomic forces, using either direct diagonalization or the kernel polynomial method (KPM) [92].
In the applications we have performed so far our systems contain supercells of 343 atoms,which
are derived by replicating a primitive fcc unit cell seven times along each of the primitive lattice
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Table 7. Elastic constants (in GPa) of diamond structure C [40], Si [21], and Ge [41], as determined
by our TB method, first-principles LAPW calculations, and experiment. All calculations were
done at the room temperature equilibrium volume. The calculations labelled C44 (ub) were done
by keeping the carbon atoms at fixed lattice coordinates as we strained the lattice.

Carbon Silicon Germanium

TB LAPW Experiment TB LAPW Experiment TB Experiment

C11 1036 1037 1076 179 152 166 144 129
C12 48 111 125 73 60 64 28 48
C44 (ub) 601 555 135 101 138
C44 601 576 95 80 112 67

directions. For such systems, direct diagonalization is faster than the order-N2 KPM method.
We only sample the � point of the supercell Brillouin zone. This approximation, which speeds
the program considerably, is certainly very good for non-metals, but we find that even for
metals it is accurate to within 10%. The MD simulations are started with atoms placed on the
regular lattice and with random velocities found from a Boltzmann distribution function for a
temperature of 2T . The calculations are performed in a micro-canonical ensemble guaranteeing
an equilibrium temperature T . The usual Verlet algorithm is used to integrate the equations
of motion. We have previously presented results for Si [21] and Au [63]. In these papers we
calculated the phonon dispersion curves and densities of states as a function of temperature
by applying a Fourier transform of the velocity–velocity autocorrelation function. We also
calculated the temperature dependence of the lattice parameter, from which we extracted
the thermal expansion coefficient. Finally, using the atomic positions generated by the MD
simulations at several temperatures we computed an atomic mean square displacement in very
good agreement with experiment.

13. Magnetism

In our earlier work [10] we applied the SK method to the ferromagnetic metals Co, Fe, and
Ni. In these calculations we determined the parameters by fitting separately to the spin-up
and spin-down APW energy bands, thus obtaining two different sets of parameters which are
coupled in the determination of the Fermi level. These early calculations give an accurate
account of the band structure of these metals but do not provide total-energy information. One
of the virtues of the SK scheme is that it is convenient to use it for empirical adjustments
of the band structure to better account for discrepancies comparing to experiment. We have
applied such an adjustment of the d-band exchange splitting for Ni to match photoemission
measurements and on that basis to calculate the Curie temperature [93] using a Stoner model
procedure.

In our latest work we have extended the NRL-TB method to describe spin-polarized
systems. For Fe it is known [94] that the local density approximation (LDA) does not yield the
correct ground state, so our LAPW fitting database consists of results using the GGA exchange–
correlation functional [54], which provides the correct total-energy ordering of structures. An
important ingredient of these calculations is that we choose the hopping and overlap parameters
independent of the spin, so the exchange splitting enters via the on-site parameters,which differ
between the two spins. Our procedure is to simultaneously fit bands and total energies for three
crystal structures, e.g., paramagnetic and ferromagnetic bcc, and paramagnetic fcc. We then
use the resulting Hamiltonian to calculate the total energy and other properties for various
crystal structures. Comparisons with independent LAPW results for the structures in the fit
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structure [99], an eight-atom supercell of the fcc lattice. The structure A2′ is a similar supercell of
the bcc lattice. Only structures which touch the tie-line are stable; the others will spontaneously
phase separate into stable structures.

are excellent for Fe [62] and Ni (which will be presented in a later publication). We have also
used this TB parametrization for Fe as the starting point for implementing Pickett’s theory [95]
for non-collinear magnetism [96]. Finally, we wish to mention that the TB approach is also
a convenient formalism for incorporating spin–orbit coupling, as we have shown in a recent
paper describing the band structure of semiconductors [97].

14. Binary compounds

As noted in section 4.2, we have begun to apply our tight-binding methodology to two-
component systems, including NbC, CoAl, and PdH [8, 52]. In this section, we will briefly
describe the creation and use of a set of TB parameters for the Cu–Au system. This will serve
to illustrate the care needed to construct good parameters for binary compounds. Note that we
originally picked this system because it seemed rather simple, and because it is well described
by atomistic potentials such as the SMA [38].

Since we do not want to lose our excellent parametrizations for Cu and Au, we will freeze
these parameters in the combined Cu–Au fit. Thus the only parameters to be fitted are those
which couple interactions between different kinds of atom. This includes the on-site parameter
cross-terms (26) as well as the parameters making up the new SK and overlap integrals. In all,
there are 130 parameters which must be determined in our scheme.

The phase diagram for the Cu–Au system [98] shows that there are only five possible
ordered phases: pure Cu (fcc), Cu3Au in the L12 structure, CuAu in the L10 structure, CuAu3

in the L12 structure, and pure Au (fcc). We therefore began construction of our first-principles
database by using the L12 phases of Cu3Au and CuAu3, and the L10 phase of CuAu. The latter
phase is tetragonal, so we must include changes in both volume and c/a in the database.

Our work on elemental systems [12] showed us that it is important to include some
structures other than the ground state in the database. We therefore included the bcc-like D03

phase of both Cu3Au and CuAu3 in the fit, as well as the NaCl (B1) and CsCl (B2) phases of
CuAu. These are all cubic phases with no relaxation, so the first-principles calculations were
rather simple5.

5 In this article we characterize crystals by their Strukturbericht symbols. All of the structures used in this paper are
fully described at http://cst-www.nrl.navy.mil/lattice/
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Experimentally, and in our LAPW calculations, the ground state of the 50–50 alloy is the
L10 phase. This phase can be constructed by taking an fcc unit cell of copper, and replacing
alternate [001] planes of copper atoms by gold. The Cu–Au parameters constructed from
the database did not show this to be the ground state, however. Instead, we found that the
L11 structure was the ground state. This structure can also be constructed from a fcc crystal,
with alternating [111] planes of Cu and Au. We did first-principles calculations for the L11

phase, and found that it is indeed above the L10 phase. We then added these calculations to
the database, and refitted the Cu–Au parameters. The new parameters showed that the L10

phase is lower in energy than the L11 phase, and is lower in energy than any of the other 50–50
structures that we tried.

We tested our parameters over a wide range of structures in the Cu1−x Aux system. In
figure 12 we express our results in terms of the formation energy of this compound. This is
defined as the energy per atom needed to combine Cu and Au into an alloy structure. Formation
energies of stable phases are negative; that is, combining Cu and Au into, say, L10 CuAu is
favoured and so will give off a certain amount of heat. To reduce clutter we have not included
all of our calculations in this figure. We do show the lowest-energy structure that we have
found at each concentration, as well as some of the higher-energy structures.

The tie-line drawn on figure 12 connects the stable structures of the Cu–Au system.
Structures with energies above this line will spontaneously phase separate into stable structures.
Thus the A1′ (properly, Ca7Ge [99]) structure of Cu7Au (x = 1/8) will spontaneously
decomposed into fcc Cu and L12 Cu3Au, in agreement with the published phase diagram.
We note that the L12 phase of CuAu3 is slightly above the tie-line, which agrees with neither
the published phase diagram [98] nor our LAPW calculations. This indicates that we will have
to do some more fitting to correctly describe the Au-rich phases in this system. This work is
under way, along with work to find a complete description of the elastic constants and phonon
modes of the Cu–Au system. Results for the Cu3Au L12 structure, including elastic constants,
phonon frequencies and the electronic structure of the (111) surface are given in Lekka et al
[100].

We conclude this section by summarizing our application of the NRL-TB method to
the Pd–H system [52]. In this application we fitted first-principles results for potential energy
surfaces for the dissociation of hydrogen molecules on palladium. The description of reactions
at surfaces requires a search of a configuration space which exceeds 12 dimensions. Therefore
the NRL-TB scheme, which was used to interpolate a small number of ab initio energies,
is an efficient procedure for addressing this problem. We used a 10 × 10 Hamiltonian per
molecule, constructed from our pure non-orthogonal spd Pd parameters6, with the addition
of new s-orbital hydrogen and H–Pd parameters, which were determined by fitting to the ab
initio energies for Pd–H surfaces. We reproduced the first-principles potential energy surface
with an RMS error of 0.1 eV, demonstrating the applicability of this approach to the problem
of dissociation of molecules at surfaces. The obvious next step is to perform a MD simulation
involving many atoms and trajectories.
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